NanoSIMS 50L

SIMS Microprobe for Isotopic and Trace Element Analysis at High Spatial Resolution
The NanoSIMS 50L is a unique ion microprobe optimizing SIMS analysis performance at high lateral resolution. It is based on a coaxial optical design of the ion beam and the secondary ion extraction, and on an original magnetic sector mass analyzer with multicollection.
  • Product overview +


    The NanoSIMS 50L delivers simultaneously key performance metrics that can only be obtained individually with any other known instrument or technique:
    • High analysis spatial resolution (down to 50 nanometers)
    • High sensitivity (ppm in element imaging)
    • High Mass Resolution (M/dM),
    • Parallel acquisition of seven masses
    • Fast acquisition (DC mode, not pulsed)
    • Analysis of electrically insulating samples without problem.
    And thanks to recent improvements, isotope ratio reproducibility of a few tenths of permil can now be achieved.

    Extended fields of applications

    Microbiology:

    The NanoSIMS 50L opens new possibilities for coupling phylogenetic identity (with FISH or El-FISH) and metabolic function (using stable isotope labeling) of single cells in studies of mixed microbial communities from the environment.

    Cell biology:
    50nm resolution and isotopic ratio capabilities of the NanoSIMS 50L allow intra-cellular measurement of accumulations and fluxes of molecules labeled with stable isotopes

    Geology and space science:
    The NanoSIMS 50L allows precise isotopic and elemental measurements of deep sub-micron areas, grains or inclusions from interplanetary dust particles, meteorites, and mineral sections. Working in multiple Faraday Cup configuration and with spot size of a few µm, it delivers isotope ratio measurements with precision and external reproducibility down to a few tenths of permil.

    Materials Research:
    Thanks to its high sensitivity at high mass resolution (no mass interference), the NanoSIMS 50L allows trace element (dopant) imaging & quantification with 50nm SIMS lateral resolution, even in electrically insulating materials. All elements except noble gases are accessible, from hydrogen to plutonium.

    The NanoSIMS 50L was originally designed by Pr. G. Slodzian, University of Paris Sud, France.
  • See what the NanoSIMS can do +

  • Download documentation +

  • NanoSIMS publications +


    An Excel spreadsheet compiling scientific research articles using NanoSIMS data is available for download. The articles are ordered by main applications as below and are easily searchable with Excel word search functions:

    • Atmospheric particles / Aerosols
    • Biomineralization / Paleoclimate
    • Cell Biology
    • Environmental Microbiology
    • Geology / Environment
    • Geochronology
    • Paleobiology / Evolution
    • Cosmetics & Pharmacology
    • Planetary Sciences
    • Plant
    • Soil
    • Materials
    • Instrumentation / Methodology
    Download spreadsheet here: NanoSIMS scientific articles compilation (last update: 12 nov 2017)

    Do not hesitate to contact us at cameca.info@ametek.com if you can not access some pdf files by your own. You are also more than welcome to send us any missing references, pdf and supplements!
  • NanoSIMS users around the world +

    Below are links to some of our NanoSIMS Users
    If your site is not listed and you would like to appear on this page, please contact cameca.info@ametek.com.

    Stanford Nano Shared Facilities (SNSF), CA, USA
    NSF provides shared scientific instrumentation, laboratory facilities, and expert staff support to enable multidisciplinary research and educate tomorrow’s scientists and engineers.

    NASA, Astromaterials Research & Exploration Science, Houston TX, USA
    The ARES scientists are dedicated to astromaterials research (meteorites, cosmic and interplanetary dust, solar wind, and lunar rocks), exobiology & organic geochemistry. They use a NanoSIMS 50L to uncover insights on processes of early solar system and stellar evolution.

    Chalmers University of Technology
    The NanoSIMS 50L in Gothenburg is the first of these instruments in Scandinavia. The NanoSIMS is suitable for a wide variety of applications such as grain boundary analysis, characterization of stress corrosion cracking, sub-cellular drug/peptide imaging and nitrogen fixation studies in bacteria.

    UPFL: Université Polytechnique Fédérale de Lausanne
    Laboratory for Biological Geochemistry LGB. Established in 2012, the LBG currently consists of about 15 Senior Scientists, Postdocs, PhD- and Master students working on research projects at the interface between isotope geochemistry, mineralogy and biology.

    TUM: Technische Universität München, Germany
    Research Department Ecology and Ecosystem Management. Soil is the focal and connecting link between the information, matter and energy cycles of the hydrogeosphere and the atmosphere. Soil organic matter, clay sized particles and iron oxides are the most important reactants in soils building a complex physico-chemical interface. (…)

    Helmholtz Centre for Environmental Research – UFZ Leipzig
    Department of Isotope Biogeochemistry.
    What is the role of biogeochemical processes in the functionality of sustainably managed ecosystems? How can stable isotope readings assist the understanding of the fate of chemicals in anoxic environments such as soil-aquifer systems, freshwater and deep-sea sediments and bioreactors? (…)

    CalTech Center for Microanalysis, USA
    The Center for Microanalysis at Caltech houses a NanoSIMS 50L and an IMS 7f-GEO, providing expertise for microanalysis of geological, meteoritic and synthetic materials. Research projects carried out at CCM are most varied, ranging from cosmochemistry to experimental studies on climate change, geochronology, in-situ studies of microbial communities, materials science engineering...

    Center for NanoImaging, Brigham and Women's Hospital
    Our mission is to extend multi-isotope imaging mass spectrometry – or MIMS – to new areas of biology and biomedical research, including with human translational studies conducted at the Brigham and Women’s Hospital and collaborating medical centers.

    Washington University in Saint Louis, MI, USA
    The Laboratory for Space Sciences at Washington University received the first NanoSIMS in 2000. Research projects cover presolar grains, interplanetary dust particles, meteorite geochemistry etc.

    Utrecht University, Netherlands
    Since summer 2013 Utrecht University hosts the Dutch national facility for high-resolution in situ isotope and element analysis of natural materials, supporting research in biogeochemistry and (microbial) ecology, paleo-environmental and climate reconstructions, planetary and solid earth sciences.
    > Watch video on NanoSIMS

    Manchester University, School of Materials, UK
    The NanoSIMS 50L is a major component of the Multi-Disciplinary Characterisation Facility, and is applied across a wide range of projects in advanced materials research, geological investigations of interest to the nuclear,oil and gas sectors, as well as the study of extra-terrestrial materials, but also tracing biochemical processes in microbes and plants.

    Max Planck Institut, Bremen, Germany

    The Max Planck Institute for Marine Microbiology of Bremen hosts the first NanoSIMS dedicated to environmental microbiology.

    Leibniz Institute for Baltic Sea Research (IOW), Warnemünde, Germany
    The NanoSIMS 50L at IOW is applied to a wide range of research fiels from microbiology and medicine to particle analysis and soil science.

    Environmental Molecular Science Laboratory, Richland, WA, USA
    EMSL, a national scientific user facility at Pacific Northwest National Laboratory has been equipped with a NanoSIMS 50L model since 2011.
    > Watch video on Air particle research at EMSL

    Faculty of Life Science, University of Vienna, Austria
    Inaugurated in February 2010, the NanoSIMS 50L lab is located within the Core Facility for Advanced Isotope Research. Under leadership from Michael Wagner, the Department of Microbial Ecology is one of the world leading center for single cell microbiology and the study of microorganisms in selected ecosystems.

    Institut Curie, Orsay, France
    Analytical Imaging of the Cell by Secondary Ion Mass Spectroscopy (SIMS microscopy). Introduction: "Of the various analytical methods developed in microscopy during the latter half of the century, SIMS imaging is probably one of the most powerful and sophisticated. Originally introduced..." Link to full article.

    Physical Research Laboratory, India
    Known as the cradle of Space Sciences in India, the Physical Research Laboratory (PRL) was founded in 1947 by Dr. Vikram Sarabhai. As a unit of the Department of Space, Government of India, PRL carries out fundamental research in select areas of Physics, Space & Atmospheric Sciences, Astronomy, Astrophysics & Solar Physics, and Planetary & Geosciences.

    Centre for Microscopy, Characterization & Analysis, UWA, Perth, Autralia
    Established in 1970, the CMCA provides essential teaching and research infrastructure in ion, electron, laser and light microscopy and microanalysis to universities, goverment of Western Australia and local industry. It is now home to two CAMECA ion probes, the NanoSIMS 50 installed in 2003 and the more recently acquired IMS 1280.

    LIST, Luxembourg institute of Science and Technology
    The Luxembourg Institute of Science and Technology (LIST) is a mission-driven Research and Technology Organisation (RTO) that develops advanced technologies and delivers innovative products and services to industry and society.

    Max Planck Institute for Chemistry, Cosmochemistry Department, Mainz, Germany
    The Cosmochemistry Department consists of several groups of scientists and technical personnel whose research interests and activities span a wide variety of fields in cosmochemical and space sciences. Many abstracts in the astrophysics field, downloadable in pdf format.

    The Department of Materials, University of Oxford, UK
    The CAMECA NanoSIMS 50 is an ultra high resolution chemical imaging facility combining the sensitivity of a dynamic SIMS with a lateral resolution of about 100nm. Our machine was delivered in August 2002 and is used on a very wide range of projects in the analysis of metallic, semiconducting, polymeric and biological materials....

    Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC)
    The IMPMC is particularly notable in its multidisciplinary approach. This means most topics are studied by researchers from different backgrounds—in physics, Earth science or biology. Experimental platforms, technical know-how and scientific expertise are all used to conduct research on the interactions between the living world (including bacteria) and the mineral world.

    Lawrence Livermore National Laboratory, California, USA
    Biology, materials, space sciences...
  • Software +

    • WinCurve dataprocessing sofware
      WinCurve

      Specifically developed for CAMECA SIMS instruments, WinCurve offers powerful data processing & visualization capabilities in a user-friendly environment.

      Keep Reading

    • WinImage Software
      WinImage II

      Specifically developed for CAMECA SIMS instruments, WinImage II offers powerful image visualization, processing & printing capabilities under PC-Windows™ Environment.

      Keep Reading

    • APM Software
      APM

      Automated Particle Measurement (APM) is CAMECA software tool allowing fast screening of millions of particles, particle detection and isotopic characterization.

      Keep Reading

  • Upgrade kits +

    PRIMARY COLUMN

    RF-plasma O-: High brightness O- primary ion source
    Replaces the duoplasmatron O- ion source. The higher brightness of the RF-plasma ion source permits to obtain similar O- beam density and lateral resolution as with the Cs+ source.

    D1 5-Slits_NS: Five D1 Aperture Diaphragm Slit
    Objective/immersion lens aperture strip increases the flexibility by increasing the diameter choice from 4 to 5 sizes.

    EXLIE Pre-implant_NS: Extreme low impact energy
    Ultra Low energy (25-500eV) sample bombardment allows Pre-implantation/cleaning without consuming top surface of ultrathin samples.

    High Current Column_NS: High current primary ion column
    Allows Larger maximum Cs+ beam current (up to 20nA instead of a few nA)
    Using larger current permits to use multiple FCs instead of EM and improve isotope ratio reproducibility.

    MASS ANALYZER

    EM Preamplifier Gen2_NS: Five new EM preamplifier-discriminators
    Improvement of electronic ion pulse amplification for ion counting.
    More reliable settings and adjustments of discriminator/threshold for more reproducible isotopic ratios.

    Internal Multico Gen2_NS: New internal Multicollection
    Improved reliability, less short-circuits and blockages due to moveable cables.

    Low Noise Preamplifier_NS: Multico Geo Faraday : low noise preamplifier for FC#1
    Precise FC-EM isotope ratios
    Lower noise/background for the Faraday cup resulting in better reproducibility and larger current detection range in FC.

    Multico Triple Faraday_NS: Multicollection triple Faraday
    Three FCs instead of one
    Permits to measure isotopic ratios in multiple FCs with sub-permil reproducibility, generally recorded with higher (a few nA) and µm spot.

    NMR H/D_NS: Additional NMR probe for Hydrogen
    Stability of low mass spectrum lines.
    A third, dedicated NMR probe is added and improves the stability of analyzer magnetic field for high reproducibility on H ratios.

    IMAGING

    Optical Microscope Gen2_NS: Improved Optical Microscope
    Replacement of illumination and optical microscope for more uniform lighting, digital camera, better resolution, numerical zoom

    SED_NS: Secondary Electron Detector
    Secondary electron imaging for localization of small particles and good contrast to complement SIMS imaging.

    ELECTRONICS

    32b_Acquisition Board_NS: 32 bits counting board
    Replaces 16bit former version and is necessary for remote control through the internet using Team Viewer. No more saturation on SIMS images, faster scanning for less charging problems.

    DATA SYSTEM

    PC automation_NS: PC Windows Control Upgrade
    The SUN system is no more supported and replaced by a PC Windows automation.
    New functions available under PC version.

    Software Version Update_NS: Updated Software version
    Latest PC automation version for removal of problems, new functions, and also required for some upgrades.

    Control Duplication_NS: Duplication of NanoSIMS control
    Control of the instrument from a separate operator room (<50 m), Cameca designed keypad on both rooms. Allows Optimized operation comfort (reduced noise, separate T°C control)

    Additional Standard WinImage_NS: Additional Standard WinImage Off-line PC Software Licence
    Image processing of SUN and PC data. Dongle for Multiple users.

    AUTOMATION

    DUO Auto Valve_NS: Automation of Duoplasmatron leak valve
    Allows closing the leak valve at the end of unattended acquisition when using the duoplasmatron for longer use of duo source between dismounting for cleaning.

    Full MDA_NS: Aperture and Hexapole Automation
    Automation of slits & apertures for improvement of reproducibility, access by lower level users, chaining of cleaning/acquisition, comfort of use. 

    SAMPLE-HOLDERS AND SHUTTLES

    SAMPLE-HOLDERS & SHUTTLES_NS: List of the sample-holders and the shuttles available here
    Please contact the after-sales service for orders.

    You may also check the software-versions available for your instrument.

    Don't hesitate to contact your local agent or the CAMECA sales department for more information.